Космология. Альтернативная космология Первым предположил свою модель вселенной

Введение

Издавна человеческая мысль пытается разрешить проблему происхождения нашего мира, возникновения и дальнейшей судьбы вселенной. Этот вопрос относится к числу вечных вопросов, и, наверное, никогда не перестанет волновать умы людей. В разные времена предлагались и различные решения указанной проблемы. Согласно одним из них, мир был сотворен и когда-то начал свое существование; согласно другим – мир вечен и не имеет начала. Известны и такие точки зрения, согласно которым вселенная периодически возникает и уничтожается.

Происхождение и эволюция Вселенной

Вселенная возникла примерно 20 млрд. лет тому назад из некоего плотного и горячего протовещества. Сегодня можно только предполагать, каким было это прародительское вещество Вселенной, как оно образовалось, каким законам подчинялось, и что за процессы привели его к расширению. Существует точка зрения, что с самого начала протовещество с гигантской скоростью начало расширяться. На начальной стадии это плотное вещество разлеталось, разбегалось во всех направлениях и представляло собой однородную бурлящую смесь неустойчивых, постоянно распадающихся при столкновениях частиц. Остывая и взаимодействуя на протяжении миллионов лет, вся эта масса рассеянного в пространстве вещества концентрировалась в большие и малые газовые образования, которые в течение сотен миллионов лет, сближаясь и сливаясь, превращались в громадные комплексы. В них в свою очередь возникали более плотные участки – там впоследствии и образовались звезды и даже целые галактики. В результате гравитационной нестабильности в разных зонах образовавшихся галактик могут сформироваться плотные «протозвездные образования» с массами, близкими к массе Солнца. Начавшийся процесс сжатия будет ускоряться под влиянием собственного поля тяготения. Процесс этот сопровождает свободное падение частиц облака к его центру – происходит гравитационное сжатие. В центре облака образуется уплотнение, состоящее из молекулярного водорода и гелия. Возрастание плотности и температуры в центре приводит к распаду молекул на атомы, ионизации атомов и образованию плотного ядра протозвезды. Существует гипотеза о цикличности состояния Вселенной. Возникнув когда-то из сверхплотного сгустка материи. Вселенная, возможно, уже в первом цикле породила внутри себя миллиарды звездных систем и планет. Но затем неизбежно Вселенная начинает стремиться к тому состоянию, с которого началась история цикла, красное смещение сменяется фиолетовым, радиус Вселенной постепенно уменьшается и в конце концов вещество Вселенной возвращается в первоначальное сверхплотное состояние, по пути к нему безжалостно уничтожив всяческую жизнь. И так повторяется каждый раз, в каждом цикле на протяжении вечности! К началу 30-х годов сложилось мнение, что главные составляющие Вселенной – галактики, каждая из которых в среднем состоит из 100 млрд. звезд. Солнце вместе с планетной системой входит в нашу Галактику, основную массу звезд которой мы наблюдаем в форме Млечного Пути. Кроме звезд и планет. Галактика содержит значительное количество разреженных газов и космической пыли. Конечна или бесконечна Вселенная, какая у нее геометрия – эти и многие другие вопросы связаны с эволюцией Вселенной, в частности с наблюдаемым расширением. Если, как это считают в настоящее время, скорость «разлета» галактик увеличится на 75 км/с на каждый миллион парсек, то экстраполяция к прошлому приводит к удивительному результату: примерно 10–20 млрд. лет назад вся Вселенная была сосредоточена в очень маленькой области. Многие ученые считают, что в то время плотность Вселенной была такая же, как у атомного ядра. Проще говоря, Вселенная тогда представляла собой одну гигантскую «ядерную каплю». По каким-то причинам эта «капля» пришла в неустойчивое состояние и взорвалась. Последствия этого взрыва мы наблюдаем сейчас как системы галактик. Самый серьезный удар по незыблемости Вселенной был нанесен результатами измерений скоростей удаления галактик, полученными известным американским ученым Э. Хабблом. Он установил, что любая галактика удаляется от нас в среднем со скоростью, пропорциональной расстоянию до нее. Это открытие окончательно разрушило существовавшее со времен Аристотеля представление о статичной, незыблемой Вселенной, уже, впрочем, пошатнувшееся в связи с открытием эволюции звезд. Значит, галактики вовсе не являются космическими фонарями, подвешенными на одинаковых расстояниях друг от друга, и, более того, раз они удаляются, то когда-то в прошлом они должны были быть ближе к нам. Около 20 млрд. лет тому назад все галактики, судя по всему, были сосредоточены в одной точке, из которой началось стремительное расширение Вселенной до современных размеров. Но где же находится эта точка? Ответ: нигде и в то же время повсюду; указать ее местоположение невозможно, это противоречило бы основному принципу космологии. Еще одно сравнение, возможно, поможет понять это утверждение. Согласно общей теории относительности, присутствие вещества в пространстве приводит к его искривлению. При наличии достаточного количества вещества можно построить модель искривленного пространства. Передвигаясь по земле в одном направлении, мы в конце концов, пройдя 40000 км, должны вернуться в исходную точку. В искривленной Вселенной случится то же самое, но спустя 40 млрд. световых лет; кроме того, «роза ветров» не ограничивается четырьмя частями света, а включает направления также вверх-вниз. Итак, Вселенная напоминает надувной шарик, на котором нарисованы галактики и, как на глобусе, нанесены параллели и меридианы для определения положения точек; но в случае Вселенной для определения положения галактик необходимо использовать не два, а три измерения. Расширение Вселенной напоминает процесс надувания этого шарика: взаимное расположение различных объектов на его поверхности не меняется, на шарике нет выделенных точек. Чтобы оценить полное количество вещества во Вселенной, нужно просто подсчитать все галактики вокруг нас. Поступая, таким образом, мы получим вещества меньше, чем необходимо, чтобы, согласно Эйнштейну, замкнуть, «воздушный шарик» Вселенной. Существуют модели открытой Вселенной, математическая трактовка которых столь же проста и которые объясняют нехватку вещества. С другой стороны, может оказаться, что во Вселенной имеется не только вещество в виде галактик, но и невидимое вещество в количестве, необходимом, чтобы Вселенная была замкнута; полемика по этому поводу до сих пор не затихает.

Креативная роль физического вакуума

Произнося слово «вакуум», мы обычно представляем себе чрезвычайно разреженную среду, которую либо исследуют в специальных лабораториях, либо наблюдают в космическом пространстве. Однако вакуум это не пустота, а нечто совершенно иное: особое, ненаблюдаемое в повседневной жизни состояние материи, называемое физическим вакуумом.

Обычных (реальных) частиц в пустом объеме, конечно, нет, но квантовая теория предсказывает существование множества других частиц, называемых виртуальными. Такие частицы способны при определенных условиях превращаться в реальные.

Время жизни для частиц с массой me около

с. Эта величина очень мала и говорит они не столько о «жизни», сколько о кратковременном всплеске жизни весьма странных частиц и связанных с ними полей.

Итак, море ненаблюдаемых частиц, готовых при определенных условиях превратиться в обычное.

Состояние физического вакуума можно охарактеризовать наименьшим значением энергии таких квантовых полей, как скалярное поле, которое должно существовать в вакууме. Этому полю ставится в соответствие гипотетическая частица хиггс (по имени ученого Хиггса, ее предложившего), которая является примером сверхтяжелого бозона, масса которого, возможно, в

раз больше массы протона. Такие частицы могут рождаться при температуре K. Существуют проекты огромных ускорителей, где, наблюдая взаимодействие частиц, ученые надеются подтвердить реальность существования хиггсов.

Один из проектов американские инженеры и физики планируют осуществить в конце века. Это будет очень мощный ускоритель на встречных пучках, причем для уменьшения потребляемой энергии в кольцевой установке с длиной окружности 84 км будут использованы сверхпроводящие магниты. Будущий ускоритель назван сверхпроводящим суперколлайдером SSC.

Одно из удивительных свойств физического вакуума связано с тем, что он создает отрицательное давление и, стало быть, сможет оказаться источником сил отталкивания в природе. Это свойство играет исключительно важную роль в сценарии «раздувающейся Вселенной».

Парадоксы стационарной Вселенной

В 1744 г. швейцарский астроном Жан Филипп де Шезо открыл фотометрический парадокс, связанный с предполагаемой бесконечностью вселенной. Суть его в следующем: если в бесконечной вселенной бесчисленное множество звезд, то по любому направлению взгляд земного наблюдателя непременно наталкивался бы на какую-нибудь звезду, и тогда небосвод имел бы яркость сравнимую с яркостью солнца, чего в действительности не наблюдается. В 1826 г. немецкий астроном Генрих Ольберс независимым путем пришел к тем же выводам. С тех пор фотометрический парадокс носит имя парадокса Шезо-Ольберса. Ученые пытались различными путями устранить указанный парадокс, предполагая неравномерность расположения звезд или поглощение света газопылевыми межзвездными облаками, как это пытались сделать Шезо и Ольберс. Однако, как было позже показано, газопылевые облака должны были нагреться и сами переизлучать поглощенные лучи, и этот факт не позволял избежать фотометрического парадокса.

В 1895 г. немецкий астроном Хуго Зеелигер открыл гравитационный парадокс, также связанный с предполагаемой бесконечностью вселенной. Суть его такова: если в бесконечной вселенной бесчисленное множество равномерно распределенных звезд (масс), то сила тяготения их, действующая на любое тело, становится или бесконечно большой или неопределенной (в зависимости от способа расчета), чего не наблюдается. И в этом случае предпринимались попытки избежать гравитационного парадокса, предполагая в законе тяготения другую формулу для гравитационной силы, или, считая, что плотность масс во вселенной близка к нулю. Но точные наблюдения за движением планет солнечной системы опровергли эти предположения. Парадокс оставался в силе.

Исторически представления о Вселенной всегда развивались в рамках мысленных моделей Вселенной, начиная с Древних мифов. В мифологии практически любого народа значительное место занимают мифы о Вселенной - ее происхождении, сущности, структуре, взаимосвязях и возможных причинах конца . В большинстве древних мифов мир (Вселенная) не вечен, он создан высшими силами из некой первоосновы (субстанции), обычно из воды или из хаоса. Время в древних космогонических представлениях чаще всего циклично, т.е. события рождения, существования и гибели Вселенной следуют друг за другом по кругу, подобно всем объектам в природе. Вселенная представляет собой единое целое, все ее элементы связаны между собой, глубина этих связей различна вплоть до возможных взаимопревращений, события следуют друг за другом, сменяя друг друга (зима и лето, день и ночь). Этот мировой порядок противопоставляется хаосу. Пространство мира ограниченно. Высшие силы (иногда боги) выступают или творцами Вселенной или хранителями мирового порядка. Структура Вселенной в мифах предполагает многослойность: наряду с явленным (срединным) миром присутствуют верхний и нижний миры, ось Вселенной (часто в виде Мирового древа или горы), центр мира - место, наделенное особыми сакральными свойствами, существует связь между отдельными слоями мира. Существование мира мыслится регрессивно - от «золотого века» к упадку и гибели. Человек в древних мифах может быть аналогом всего Космоса (весь мир создан из гигантского существа, подобного человеку-великану), что укрепляет связь человека и Вселенной. В древних моделях человек никогда не занимает центрального места. В VI-V вв. до н.э. создаются первые натурфилософские модели Вселенной, наиболее разработанные в Древней Греции . Предельным понятием в этих моделях выступает Космос как единое целое, прекрасное и законосообразное. Вопрос, как образовался мир, дополняется вопросом, из чего устроен мир, как он изменяется. Ответы формулируются уже не образным, а абстрактным, философским языком. Время в моделях чаще всего носит еще циклический характер, но пространство - конечно. В качестве субстанции выступают как отдельные стихии (вода, воздух, огонь - в Милетской школе и у Гераклита), смесь стихий, так и единый, неделимый неподвижный Космос (у элеатов), онтологи- зированное число (у пифагорейцев), неделимые структурные единицы - атомы, обеспечивающие единство мира, - у Демокрита. Именно модель Вселенной Демокрита бесконечна в пространстве. Натурфилософы определяли статус космических объектов - звезд и планет, различия между ними, их роль и взаиморасполо- Жение во Вселенной. В большинстве моделей существенную роль играет движение. Космос построен по единому закону - Логосу, этому же закону подчинен и человек - микрокосм, уменьшенная копия Космоса. Развитие пифагорейских взглядов, геометризующих Космос и впервые четко представивших его в виде сферы, вращающейся вокруг центрального огня и им же окруженного, получило воплощение в поздних диалогах Платона. Логической вершиной взглядов античности на Космос долгие века считалась модель Аристотеля, математически обработанная Птолемеем. В несколько упрощенном виде эта модель, поддерживаемая авторитетом церкви, просуществовала около 2 тыс. лет. По Аристотелю, Вселенная: о есть всеобъемлющее целое, состоящее из совокупности всех воспринимаемых тел; о единственна в своем роде; о пространственно конечна, ограничена крайней небесной сферой, за ней же «нет ни пустоты, ни места»; о вечна, безначальна и бесконечна во времени. При этом Земля неподвижна и находится в центре Вселенной, земное и небесное (надлунное) абсолютно противоположны по своему физико-химическому составу и характеру движения. В X1V-XVI вв., в эпоху Возрождения, вновь возникают натурфилософские модели Вселенной. Они характеризуются, с одной стороны, возвращением к широте и философичности взглядов античности, а с другой - строгой логикой и математикой, унаследованной от Средневековья. В результате теоретических изысканий Николай Кузанский, Н. Коперник, Дж. Бруно предлагают модели Вселенной с бесконечным пространством, необратимым линейным временем, гелиоцентрической Солнечной системой и множеством миров, подобных ей. Г. Галилей, продолжая эту традицию, исследовал законы движения - свойство инерции и первым сознательно использовал мысленные модели (конструкты, позже ставшие основой теоретической физики), математический язык, который он считал универсальным языком Вселенной, сочетание эмпирических методов и теоретической гипотезы, которую опыт должен подтвердить или опровергнуть, и, наконец, астрономические наблюдения с помощью телескопа, значительно расширившие возможности науки. Г. Галилей, Р. Декарт, И. Кеплер заложили основы современных физических и космогонических представлений о мире, и на их базе и на базе открытых Ньютоном законов механики в конце XVII в. сложилась первая научная космологическая модель Вселенной, получившая название классической ньютоновской. Согласно этой модели, Вселенная: О статична (стационарна), т.е. в среднем неизменна во времени; О однородна - все точки ее равноправны; О изотропна - равноправны и все направления; о вечна и пространственно бесконечна, причем пространство и время абсолютны - не зависят друг от друга и от движущихся масс; О имеет отличную от нуля плотность материи; О имеет структуру, вполне постигаемую на языке наличной системы физического знания, что означает бесконечную экстраполиру- емость законов механики, закона всемирного тяготения, которые являются основными законами для движения всех космических тел. Кроме того, во Вселенной применим принцип дальнодействия, т.е. мгновенное распространение сигнала; единство Вселенной обеспечивается единой структурой - атомарным строением вещества. Эмпирической базой данной модели служили все полученные в астрономических наблюдениях данные, для их обработки использовался современный математический аппарат. Эта конструкция опиралась на детерминизм и материализм рационалистической философии Нового времени . Несмотря на обнаружившиеся противоречия (фотометрический и гравитационный парадоксы - следствия экстраполяции модели на бесконечность), мировоззренческая привлекательность и логическая непротиворечивость, а также эвристический потенциал делали ньютоновскую модель единственно приемлемой для космологов вплоть до XX в. К необходимости пересмотра взглядов на Вселенную подтолкнули многочисленные открытия, сделанные в XIX и XX вв.: наличие давления света, делимость атома, дефект масс, модель строения атома, неплоские геометрии Римана и Лобачевского, однако только с появлением теории относительности стала возможной новая квантово-релятивистская модель Вселенной. Из уравнений специальной (СТО, 1905 г.) и общей (ОТО, 1916 г.) теории относительности А. Эйнштейна следует, что пространство и время связаны между собой в единую метрику, зависят от движущейся материи: при скоростях, близких к скоррсти света, пространство сжимается, время растягивается, а вблизи компактных мощных масс пространство-время искривляется, тем самым модель Вселенной геометризируется. Были даже попытки представить всю Вселенную как искривленное пространство-время, узлы и дефекты которого интерпретировались как массы. Эйнштейн, решая уравнения для Вселенной, получил модель, ограниченную в пространстве и стационарную. Но для сохранения стационарности ему потребовалось ввести в решение дополнительный лямбда-член, эмпирически ничем не подкрепленный, по своему действию эквивалентный полю, противостоящему гравитации на космологических расстояниях. Однако в 1922-1924 гг. А.А. Фридман предложил иное решение этих уравнений, из которого вытекала возможность получения трех различных моделей Вселенной в зависимости от плотности материи, но все три модели были нестационарными (эволюционирующими) - модель с расширением, сменяющимся сжатием, осциллирующая модель и модель с бесконечным расширением. В то время отказ от стационарности Вселенной был поистине революционным шагом и воспринимался учеными с большим трудом, так как казался противоречащим всем устоявшимся научным и философским взглядам на природу, неизбежно ведущим к креацианизму . Первое экспериментальное подтверждение нестационарное™ Вселенной было получено в 1929 г. - Хаббл открыл красное смещение в спектрах удаленных галактик, что, согласно эффекту Доплера, свидетельствовало о расширении Вселенной (такую интерпретацию разделяли тогда далеко не все космологи). В 1932- 1933 гг. бельгийский теоретик Ж. Леметр предложил модель Вселенной с «горячим началом», так называемым «Большим взрывом». Но еще в 1940-е и в 1950-е гг. предлагались альтернативные модели (с рождением частиц из с-поля, из вакуума), сохраняющие стационарность Вселенной. В 1964 г. американские ученые - астрофизик А. Пензиас и радиоастроном К. Вильсон обнаружили однородное изотропное реликтовое излучение, явно свидетельствующее о «горячем начале» Вселенной. Эта модель стала доминирующей, была признана большинством космологов. Однако сама эта точка «начала», точка сингулярности рождала множество проблем и споров как по поводу механизма «Большого взрыва», так и потому, что поведение системы (Вселенной) вблизи нее не удавалось описать в рамках известных научных теорий (бесконечно большие температура и плотность должны были сочетаться с бесконечно малыми размерами) . В XX в. выдвигалось множество моделей Вселенной - от тех, которые отвергали в качестве основы теорию относительности, до тех, которые изменяли в базовой модели какой-либо фактор, например «сотовое строение Вселенной» или теория струн. Так, для снятия противоречий, связанных с сингулярностью, в 1980-1982 гг. американский астроном П. Стейнхарт и советский астрофизик А. Линде предложили модификацию модели расширяющейся Вселенной - модель с инфляционной фазой (модель «раздувающейся Вселенной»), в которой первые мгновения после «Большого взрыва» получали новую интерпретацию. Эту модель продолжали дорабатывать и позже, она снимала ряд существенных проблем и противоречий космологии . Исследования не прекращаются и в наши дни: выдвинутая группой японских ученых гипотеза о происхождении первичных магнитных полей хорошо согласуется с описанной выше моделью и позволяет надеяться получить новые знания о ранних стадиях существования Вселенной. Как объект исследования Вселенная слишком сложна, чтобы изучать ее дедуктивно, возможность продвигаться вперед в ее познании дают именно методы экстраполяции и моделирования. Однако эти методы требуют точного соблюдения всех процедур (от постановки проблемы, выбора параметров, степени подобия модели и оригинала до интерпретации полученных результатов), и даже при идеальном выполнении всех требований результаты исследований будут носить принципиально вероятностный характер. Математизация знаний, значительно усиливающая эвристические возможности многих методов, является общей тенденцией науки XX в. Не стала исключением и космология: возникла разновидность мысленного моделирования - математическое моделирование, метод математической гипотезы. Сущность его в том, что сначала решаются уравнения, а затем подыскивается физическая интерпретация полученных решений. Данный порядок действий, не характерный для науки прошлого, обладает колоссальным эв ристическим потенциалом. Именно этот метод привел Фридмана к созданию модели расширяющейся Вселенной, именно таким путем был открыт позитрон и совершено еще много важных открытий в науке конца XX в. Компьютерные модели, в том числе и при моделировании Вселенной, рождены развитием компьютерной техники. На их основе доработаны модели Вселенной с инфляционной фазой; в начале XXI в. обработаны большие массивы информации, полученные с космического зонда, и создана модель развития Вселенной с учетом «темной материи» и «темной энергии». Со временем изменялась трактовка многих фундаментальных понятий. Физический вакуум понимается уже не как пустота, не как эфир, а как сложное состояние с потенциальным (виртуальным) содержанием материи и энергии. При этом обнаружено, что известные современной науке космические тела и поля составляют незначительный процент массы Вселенной, а большая часть массы заключена в косвенно обнаруживающих себя «темной материи» и «темной энергии». Исследования последних лет показали, что значительная часть этой энергии действует на расширение, растягивание, разрывание Вселенной, что может привести к фиксируемому ускорению расширения }